The submarine canyons of the Argentine Continental Margin: a review of their formation and sedimentary dynamics

Authors

  • Graziella Bozzano Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • Jacobo Martín Centro Austral de Investigaciones Científicas Argentina, CADIC-CONICET. Bernardo A. Houssay 200, V9410CAB Ushuaia, Argentina. CONICET.
  • Daniela V. Spoltore Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.
  • Roberto A. Violante Servicio de Hidrografía Naval, Departamento Oceanografía, División Geología y Geofísica Marina. Montes de Oca 2124, Buenos Aires C1270ABV, Argentina.

Keywords:

Argentine Continental Margin, Subma¬rine Canyons, Review, SW Atlantic.

Abstract

Submarine canyons are the most outstanding geomorphologic features of continental margins. They play a fundamental role in transferring sedi­ ment and organic matter from shallow to deep waters. Also, they influence oceanographic and sedimentary processes, interact with productivity and benthic ecosystems, and pose a serious threat to seafloor infrastructures. Submarine canyons have been described as steep­walled, sinuous valleys with V­shaped cross sections, axes sloping outward as continuously as river­cut land canyons and relief comparable to even the largest of land canyons. The understanding of the origin and evolution of submarine canyons has been matter of intense debate since the first geologists observed them characterizing both passive and active margins. Canyons have been interpreted as (1) the off­shore prolongation of river systems that during low sea­ level stages migrated seaward; (2) the product of the erosion caused by gravity dense flows­ called turbidity currents­ produced at the shelf­slope transition; (3) the deepening of pre­existing tectonic structures (e.g. faults) and (4) the result of slope instability combined with headward erosion. The first model only explains the genesis of the breaching­shelf canyons that connect with river systems, but does not resolve the formation of those that are unrelated to fluvial input. Turbidity currents take place at the shelf break when sufficient amount of sediment is injected into the water column by (re) suspension, resulting in a flow with higher density than the surrounding waters. These high­density flows, moving down­slope under the effect of gravity, cut the valleys that finally evolve into submarine canyons. Turbidity currents, though effective agents of erosion, do not account for the formation of slope­ confined canyons. From the other side, tectonic control can apply for limited examples of canyons, which are located in specific geological contexts. Continental slopes often show scars that are left behind by instability events. Mass wasting processes may arise from fluid escape, sediment over pressure and steepening or be triggered by seismic shocks. These initial scars would evolve into rills and then into valleys by a process that combines localized slope failures, sediment funneling and headward erosion. According to this genetic model, slope­confined and shelf­breaching canyons are, respectively, the early and mature stages in the evolution of canyons, which starts with a pre­canyon rill that advances upslope by retrogressive failure and ends with the canyon cutting the shelf break. The objective of this contribution is to review the knowledge on the submarine canyons from the Argentine Continental Margin and to suggest a working hypothesis concerning the sedimentary dynamics of the Mar del Plata Canyon, by far the best known canyon of this margin. Four main systems have been described: La Plata River, Colorado­Ne­ gro (or Bahía Blanca), Ameghino (or Chubut) and Patagonia (or Deseado). Mar del Plata Canyon, belonging to the first of these systems, cuts the slope between ~1000 m (Ewing Terrace, middle slope) and ~3900 m (lower slope­continental rise transition) as a deep valley with steep walls. In its proximal sector, between 1100 and 3000 m, it shows a sinuous path whereas the thalweg is mostly linear between 3000 an 3900 m. Seismic profiles, obtained during the Meteor research cruise M78/3a, demonstrate no evidences of incisions that could suggest past fluvial connections with the canyon head. For this reason, the origin of this canyon has been explained as an example of headward erosion. During the Holocene, the sedimentation rate inside the canyon is much higher than outside. This occurs because the large amount of sediment mobilized by bottom currents along the Ewing Terrace is intercepted by the canyon. In contrast, during the Late Glacial and deglaciation phase, turbidite accumulation has been attributed to slope instability of the drift deposits at the southern flank of the canyon. In this study, we put forward the following working hypothesis: the canyon most probably generated from slope instability and retrogressive erosion. However, when the valley moved upslope and etched the Ewing Terrace (middle slope), turbidity currents might have been produced at this water depth (1000­1200 meters) by the peculiar oceanographic dynamics driven by the interaction between bottom currents and seafloor. If confirmed by future investigations, this hypothesis would account both for the turbidite deposition and the sinuous path of the canyon in its proximal sector, which is more typical, although not exclusive, for canyons routed by turbidity currents. The detailed morphological investigations, performed in the Patagonia Canyons system by a Spanish research group in 2011, add a stimulating source of discussion about canyon formation in the Argentine Margin. These authors have proposed that topographic irregularities shaped by scars resulting from the sea­floor erosion under strong contour currents and the step separating terraces located at different water depths, might be the precursors for a pre­canyon incision. This hypothesis, of great relevance in a continental margin where down­ slope and along­slope sedimentary processes often coexist and interact, probably apply not only to the Patagonia but also to the other, less investigated, canyons systems of the Argentine Margin.

References

Ai, F., M. Strasser, B. Preu, T.J. Hanebuth, S. Krastel y A. Kopf, 2014. New constraints on oceanographic vs. seismic control on submarine landslide initiation: a geotechnical approach off Uruguay and northern Argentina. Geo-Marine Letters 34:399¬417.

Bleil, U., A. Ahn, T. Bickert, W. Böke, M. Breitzke, S. Drachenberg, E. Eades, T. Frederichs, M. Frenz, V. Heuer, C. Hilgenfeldt, V. Hopfauf, A. de Leon, H. von Lom-Keil, K. Michels, K. Pfeifer, U. Rosiak, C. Rühlemann, M. Segl, V. Spieß, R. Violante, S. Watanabe, T. Westerhold y N. Zatloucal, 2001. Report and Preliminary Results of Meteor Cruise M 46/3 Montevideo ¬ Mar del Plata. Berichte, Fachbereich Geowissenschaften, Universität Bremen 172, 161 pp.

Bozzano, G., R.A. Violante y M.E. Cerredo, 2011. Middle slope contourite deposits and associated sedimentary facies off NE Argentina. Geo-Marine Letters 31:495–507.

Carson, B., E.T. Baker, B.M. Hickey, C.A. Nittrouer, D.J. DeMaster, K.W. Thorbjarnarson y G.W. Snyder, 1986. Modern sediment dispersal and accumulation in Quinault submarine canyon¬a summary. Marine Geology 71:1¬13.

Codignotto, J.O., 1990. Evolución en el Cuaternario alto del sector de costa y plataforma submarina entre Río Coig, Santa Cruz y Punta María, Tierra del Fuego. Revista de la Asociación Geológica Argentina 45:9¬16.

Daly, R.A., 1936. Origin of submarine “canyons”. American Jour- nal of Science 31:401¬420.

Ericson, D.B., M. Ewing y B.C. Heezen, 1951. Deep¬sea sands and submarine canyons. Geological Society of America Bulletin 62:961¬965.

Ericson, D.B., M. Ewing y B.C. Heezen, 1952. Turbidity currents and sediments in the North Atlantic. American Association of Petroleum Geologists Bulletin 36:489¬511.

Ewing, M., W.J. Ludwig y J. Ewing, 1964. Sediment distribution in the ocean: the Argentine Basin. Journal of Geophysical Research 69:2003¬2032.

Ewing, M., 1965. The Sediments of the Argentine Basin (Harold Jeffreys Lecture). Quarterly Journal of the Royal Astronomical Society 6:10¬27.

Ewing, M. y A.G. Lonardi, 1971. Sediment transport and distri¬ bution in the Argentine Basin. 5. Sediment structure of the Argentina margin, basin, and related provinces. En L.H. Ahrens, F. Press, S.K. Runcorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Progress Series 8, Pergamon Press:123¬251.

Farre, J.A., B.A McGregor, W.B. Ryan y J.M. Robb, 1983. Breaching the shelfbreak: passage from youthful to mature phase in sub¬ marine canyon evolution. SEPM Special Publication 33:25¬39.

Fernandez-Arcaya, U., E. Ramirez-Llodra, J. Aguzzi, A.L. Allcock, J.S. Davies, A. Dissanayake, P. Harris, K. Howell, V.A.I. Huvenne, M. Macmillan-Lawler, J. Martín, L. Menot, M. Nizinski, P. Puig, A.A. Rowden, F. Sanchez y I.M.J. Van den Beld, 2017. Ecological role of submarine canyons and need for canyon conservation: A review. Frontiers in Marine Sciences 4:5. doi: 10.3389/fmars.2017.00005.

Gardner, W.D., 1989. Periodic resuspension in Baltimore canyon focusing of internal waves. Journal of Geophysical Research 94:18185¬18194.

Harris, P.T. y T. Whiteway, 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology 285:69¬86.

Harris, P.T., M. Macmillan-Lawler, J. Rupp y E.K. Baker, 2014. Geomorphology of the oceans. Marine Geology 352:4¬24.

Heezen, B.C. y M. Ewing, 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. American Journal of Science 250:849¬873.

Heezen, B.C., M. Ewing y D.B. Ericson, 1954. Reconnaissance survey of the abyssal plain south of Newfoundland. Deep-Sea Research 2:122¬133.

Heezen, B.C., R.J. Menzies, E.D. Schneider, M. Ewing y N.C.L. Granelli, 1964. Congo Submarine Canyon. American Associa- tion of Petroleum Geologists Bulletin 48:1126¬1149.

Hernández-Molina, F.J., M. Paterlini, R.A. Violante, P. Marshall, M. de Isasi, L. Somoza y M. Rebesco, 2009. Contourite depo¬ sitional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507¬ 510.

Hernández-Molina, F.J., M. Soto, A.R. Piola, J. Tomasini, B. Preu, P. Thompson, G. Badalini, A. Creaser, R.A. Violante, E. Morales, M. Paterlini y H. De Santa Ana, 2016. A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications. Marine Geology 378:333¬349.

Hickey, B.M., 1995. Coastal submarine canyons. En P. Muller y D. Henderson (Eds.), Proceedings of the University of Hawaii ‘Aha Huliko’a Workshop on Flow Topography Interactions, SOEST

Special Publication: 95¬110, Honolulu.

Kelling, G. y D.J. Stanley, 1970. Morphology and structure of Wilmington and Baltimore submarine canyons eastern, United States. The Journal of Geology 78: 637¬660.

Kenyon, N.H., R.H. Belderson y A.H. Stride, 1978. Channels, canyons and slump folds on the continental slope between south west Ireland and Spain. Oceanologica Acta 1:369¬380.

Kneller, B. y C. Buckee, 2000. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47:62¬94.

Krastel, S. y G. Wefer, 2009. Sediment transport off Uruguay and Argentina: From the shelf to the deep sea. RV METEOR Cruise Report M78/3a+b, 59 pp.

Krastel, S., G. Wefer, T.J. Hanebuth, A.A. Antobreh, T. Freudenthal, B. Preu, T. Schwenk, M. Strasser, R. Violante, D. Winkelman y M78/3 shipboard scientific party, 2011. Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo- Marine Letters 31:271¬283.

Lastras, G., J. Acosta, A. Muñoz y M. Canals, 2011. Submarine canyon formation and evolution in the Argentine Continental Margin between 44°30’S and 48°S. Geomorphology 128:116¬ 136.

Lonardi, A.G. y M. Ewing, 1971. Sediment transport and distri¬ bution in the Argentine Basin. 4. Bathymetry of the continental margin, Argentine Basin and other related provinces, canyons and sources of sediments. En L.H. Ahrens, F. Press, S.K. Runcorn y H.C. Urey (Eds.), Physics and Chemistry of the Earth. Progress Series 8, Pergamon Press:81¬121.

Martín, J., A. Palanques y P. Puig, 2006. Composition and varia¬ bility of downward particulate matter fluxes in the Palamós submarine canyon (NW Mediterranean). Journal of Marine Systems 60:75¬97.

Martín J., A. Palanques, J. Vitorino, A. Oliveira y H.C. de Stigter, 2011. Near¬bottom particulate matter dynamics in the Nazare submarine canyon under calm and stormy conditions. Deep- Sea Research II 58:2388¬2400.

Masson, D.G., V.A.I. Huvenne, H.C. de Stigter, G.A. Wolff, K. Kiriakoulakis, R.G. Arzola y S. Blackbird, 2010. Efficient burial of carbon in a submarine canyon. Geology 38:831¬834.

Middleton, G.V. y M.A. Hampton, 1973. Sediment gravity flows: Mechanisms of flow and deposition. En G.V. Middleton y A.H. Bouma (Eds.), Turbidites and Deep Water Sedimentation. SEPM, Pacific Sector, Short Course Lecture Notes:1¬38.

Mulder, T., J.P.M. Syvitski, S. Migeon, J.-C. Faugéres y B. Savoye, 2003. Marine hyperpycnal flows: initiation, behavior and related deposits: A review. Marine and Petroleum Geology 20:861¬882.

Normark, W.R. y D.J.W. Piper, 1991. Initiation processes and flow evolution of turbidity currents: implications for the depositional record. En R.H. Osborne (Ed.), From Shoreline to Abyss. SEPM Special Publication 46:207¬230.

Orange, D.L. y N.A. Breen, 1992. The effects of fluid escape on accretionary wedges 2. Seepage force, slope failure, headless submarine canyons, and vents. Journal of Geophysical Research 97:9277¬9295.

Paterlini, C.M., R.A. Violante, I.P. Costa, S. Marcolini, C. Laprida, N. García Chapori y G. Parker, 2005. Fisiografía y edad del Cañón submarino Mar del Plata. XVI Congreso Geológico Argentino Actas III:809¬816, La Plata.

Perillo, G.M. y J. Kostadinoff, 2005. Margen continental de la Provincia de Buenos Aires. En R.E. de Barrio, R.O. Etcheverry, M.F. Caballé y E. Llambías (Eds.), Relatorio Geología de la Provincia de Buenos Aires. XVI Congreso Geológico Argen- tino:277¬292, La Plata.

Piper, D.J.W., 2005. Late Cenozoic evolution of the continental margin of eastern Canada. Norwegian Journal of Geology 85:305¬318.

Piper, D.J.W. y W.R. Normark, 2009. Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. Journal of Sedimentary Research 79:347¬ 362.

Pratson, L.F. y B.J. Coakley, 1996. A model for the headward erosion of submarine canyons induced by downslope¬eroding sediment flows. Geological Society of America Bulletin 108:225-234.

Preu, B., F.J. Hernández-Molina, R.A. Violante, A.R. Piola, C.M. Paterlini, T. Schwenk y V. Spiess, 2013. Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep Sea Research Part I: Oceanographic Research Papers 75:157¬174.

Puig, P., A. Palanques y J. Martín, 2014. Contemporary sediment¬ transport processes in submarine canyons. Annual Review of Marine Science 6:53¬77.

Rabassa, J., A. Coronato, G. Bujalesky, M. Salemme, C. Roig, A. Meglioli, C. Heusser, S. Gordillo, F. Roig, A. Borromei y M. Quattrocchio, 2000. Quaternary of Tierra del Fuego, Southernmost South America: an updated review. Quaternary International 68:217¬240.

Rossello, E.A., Y. Lagabrielle, P.R. Cobbold y P. Marshall, 2005. Los cañones submarinos oblicuos del talud continental argen¬ tino (40° a 45° S): evidencias de inversión tectónica andina sobre el margen pasivo atlántico? X Simposio Nacional de Estudos Tectónicos-IV International Symposium on Tectonics Actas:90¬93, Curitiba.

Schulz, H., U. Bleil, R. Henrich y M. Segl, 1994. Geo Bremen South Atlantic 1994. Cruise N 29, 17 June ¬ 5 September. Meteor Berichte, Fachbereich Geowissenschaften, Universität Bremen 95¬2.

Shepard, F.P., 1933. Canyons beneath the seas. Scientific Monthly 37:31¬39.

Shepard, F.P., 1963. Submarine Geology, 2nd edition. New York, Harper & Row, 557 pp.

Shepard, F.P. y R.F. Dill, 1966. Submarine Canyons and other Sea Valleys. Rand McNally, Chicago I11, 381 pp.

Song, G.S., C.P. Ma y H.S. Yu, 2000. Fault controlled genesis of the Chilung sea valley (northern Taiwan) revealed by topographic lineaments. Marine Geology 169:305¬325.

Spencer, J.W., 1903. Submarine valleys off the American coast and in the North Atlantic. Bulletin of the Geological Society of America 14:207¬226.

Spieß, V., N. Albrecht, T. Bickert, M. Breitzke, M. Brüning, A. Dreyzehner, U. Groß, D. Krüger, H. von Lom-Keil, H.-J. Möller, M. Nimrich, W.T. Ochsenhirt, T. Rudolf, C. Seiter, T. Truscheit, R. Violante y T. Westerhold, 2002. ODP Südatlantik 2001 Part 2, Cruise No. 49, Leg 2, Montevideo ¬ Montevideo. Meteor Berichte, Fachbereich Geowissenschaften, 02¬1, Universität Bremen.

Stetson, H.C., 1936. Geology and paleontology of the Georges Bank canyons. Geological Society of America Bulletin 47:339¬ 366.

Swift, D.J.P., R. Moir y G.L. Freeland, 1980. Quaternary rivers on the New Jersey shelf: Relation of seafloor to buried valleys. Geology 8:276¬280.

Twichell, D.C. y D.G. Roberts, 1982. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons. Geology 10:408¬412.

Twichell, D.C., H.J. Knebel y D.W. Folger, 1977. Delaware River: evidence for its former extension to Wilmington Submarine Canyon. Science 195:483¬484.

Urien, C.M., 1967. Los sedimentos modernos del Río de la Plata exterior, Argentina. Boletín del Servicio de Hidrografía Naval 4:113¬213.

Urien, C.M. y M. Ewing, 1974. Recent sediments and environments of Southern Brazil, Uruguay, Buenos Aires and Rio Negro continental shelf. En C.A. Burk (Ed.), The Geology of Continental Margins. Springer, Berlin, 1009 pp.

Urien, C.M., L.R. Martins y I.R Martins, 1978. Modelos depositacionales en la Plataforma Continental de Río Grande Do Sul Uruguay y Buenos Aires. VII Congreso Geológico Argentino Actas II:639¬658, Neuquén.

Vila, F., 1982. Geomorfología y minerales de los fondos marinos. Ediciones del Instituto de Publicaciones Navales: Colección Ciencia y Técnica 52:1¬47.

Violante, R.A., C.M. Paterlini, I.P. Costa, F.J. Hernández-Molina, L.M. Segovia, J.L. Cavallotto, S. Marcolini, G. Bozzano, C. Laprida, N. García Chapori, T. Bickert y V. Spieß, 2010. Sismoestratigrafía y evolución geomorfológica del talud conti¬ nental adyacente al Litoral del Este bonaerense, Argentina. Latin American Journal of Sedimentology and Basin Analysis 7:33-62.

Violante, R.A., J.L. Cavallotto, G. Bozzano y D.V. Spoltore, 2017. Sedimentación marina profunda en el Margen Continental Argentino. Revisión y estado del conocimiento. Latin Ame- rican Journal of Sedimentology and Basin Analysis 24:7¬29.

Voigt, I., R. Henrich, B. Preu, A.R. Piola, T.J.J. Hanebuth, T. Schwenk y C.M. Chiessi, 2013. A submarine canyon as a climate archive ¬ interaction of the Antarctic Intermediate Water with the Mar del Plata Canyon (Southwest Atlantic). Marine Geology 341:46¬57.

Published

2021-03-31

How to Cite

Bozzano, G. ., Martín, J. ., Spoltore, D. V. ., & Violante, R. A. . (2021). The submarine canyons of the Argentine Continental Margin: a review of their formation and sedimentary dynamics. Latin American Journal of Sedimentology and Basin Analysis, 24(1), 85-101. Retrieved from https://www.lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/123

Issue

Section

Special Issue